Structural and energetic origins of sequence-specific DNA bending: Monte Carlo simulations of papillomavirus E2-DNA binding sites.
نویسندگان
چکیده
DNA bending is an important structural feature for indirect readout in protein-DNA recognition. The binding of papillomavirus E2 transcription factors to their DNA binding sites is associated with DNA bending, providing an attractive model system to study the origins of sequence-specific DNA bending. The consensus E2 target is of the general form ACCGN(4)CGGT with a variable four base pair region. We applied a new all-atom Monte Carlo (MC) algorithm that combines effective sampling with fast conformational equilibration. The resulting MC ensembles resemble the corresponding high-resolution crystal structures very well. Distinct bending is observed for the E2-DNA binding site with a central AATT linker in contrast to an essentially straight DNA with a central ACGT linker. Contributions of specific base pair steps to the overall bending are shown in terms of local structural parameters. The analysis of conformational substates provides new insights into the energetic origins of intrinsic DNA bending.
منابع مشابه
Bending in the right direction.
The success of a new Monte Carlo algorithm in describing sequence-specific DNA bending is reported. The approach offers the possibility of improved treatments of "indirect readout" effects in the prediction of transcription factor binding sites.
متن کاملDNA bending by an adenine--thymine tract and its role in gene regulation.
To gain insight into the structural basis of DNA bending by adenine-thymine tracts (A-tracts) and their role in DNA recognition by gene-regulatory proteins, we have determined the crystal structure of the high-affinity DNA target of the cancer-associated human papillomavirus E2 protein. The three independent B-DNA molecules of the crystal structure determined at 2.2-A resolution are examples of...
متن کاملEvolutionary and biophysical relationships among the papillomavirus E2 proteins.
Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but n...
متن کاملComprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics
Mucosal human papillomaviruses (HPVs) are etiological agents of oral, anal and genital cancer. Properties of high- and low-risk HPV types cannot be reduced to discrete molecular traits. The E2 protein regulates viral replication and transcription through a finely tuned interaction with four sites at the upstream regulatory region of the genome. A computational study of the E2-DNA interaction in...
متن کاملProtein flexibility directs DNA recognition by the papillomavirus E2 proteins
Although DNA flexibility is known to play an important role in DNA-protein interactions, the importance of protein flexibility is less well understood. Here, we show that protein dynamics are important in DNA recognition using the well-characterized human papillomavirus (HPV) type 6 E2 protein as a model system. We have compared the DNA binding properties of the HPV 6 E2 DNA binding domain (DBD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2005